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I. INTRODUCTION

Most of recent research works on analyzing wireless LAN
(WLAN) traces focused on individual user behaviors [1], [2],
[3]. These previous works provide good understandings on
WLAN users, and have made vast amount of WLAN traces
available to the research community (e.g. from [1], [2], [3],
[6]). However, we know from daily lives that we do not
make random movement decisions. Usually, WLAN users
show preferences in their visits to a small set of the campus.
As a result, mobile nodes (MNs1) in WLAN traces are in
fact not uniformly distributed across campus, and users with
similar preferences show up at the same access point (AP)
more frequently. We look into this issue and try to identify the
closeness (i.e. friendship) between node pairs, and understand
its influences on network connectivity if we make connections
between nodes based on their friendship.

Specifically, we give several intuitive definitions about
friendship between MNs, utilizing traces about their associa-
tion to APs in a WLAN. These friendship indexes capture the
observed closeness between the involved MNs from the trace.
Although such closeness may or may not reflect friendship
in social context, it reveals the closeness between wireless
devices as displayed in their association patterns. Empirical
distribution of these friendship indexes mostly follow exponen-
tial distribution, with few node pairs showing high friendship
index.

We further utilize the Small World model [4] to understand
the characteristics of the encounter-relationship graphs (ER
graphs) formed by WLAN users, in which two nodes are
connected by a link if they ever associate with the same AP
during overlapped time intervals. We find that WLAN users
form connected Small World graphs via encounters. Further-
more, we investigate the issue of how friendship influence the
characteristics of ER graphs. We find that if nodes with high
friendship indexes are used in ER graph, the resultant graph
displays higher clustering coefficient and average path length.
In other words, it is more inclined toward a regular graph. On
the other hand, if we use nodes with low friendship index in
ER graph, it displays lower clustering coefficient and average
path length. This finding points out, similar to social networks,
close friends in WLANs often form cliques and random friends
are keys to wide-reached connectivity in a network.

1In this paper we use the terms user, node, and mobile node (MN)
interchangeably. We assume that one MAC address in the trace corresponds
to a unique device (MN), and a MN is always tied to the same user.

II. WLAN TRACES

In this paper we utilize the WLAN traces available to the
research community (e.g. [1], [2], [3]), which were collected
from university campuses with different characteristics. For-
mer studies on the traces focused mostly on either averaged
individual user behavior or global statistics about the network
usage. In this work we take one step further to study the re-
lationships between users in the traces, by defining friendship
indexes and analyzing its distributions from the traces.

In this study we mainly focus on wireless traces collected
from university campuses. Among the traces, the USC trace
is collected specifically for the purpose of our studies, while
Dartmouth [3], UCSD [2], and MIT [1] traces were collected
by other research groups. The traces were collected with
different methodologies, but we can derive the association
history information for each user from all four traces, and
further derive other metrics based on that. These four traces
are chosen to represent different campus environments, user
populations, location granularity, and trace-collection methods.
In order to make the results we get below comparable between
traces, we only analyze selected one-month chunks from the
longer Dartmouth and UCSD traces. We cannot go into the
details about trace processing due to space constraints. Please
refer to [6] for more details.

We bring up new perspectives to study the WLAN traces
by utilizing Small World theory to describe the encounter
relationship graph (ER graph). Small World graph model
is proposed in [4] and widely utilized to describe various
networks in many areas, such as social networks, Internet
topology, and electrical power networks.

III. FRIENDSHIP BETWEEN NODES

In our daily lives, we are bound to meet with colleagues
and friends much more often than others. In this section we
try to investigate using the wireless LAN traces whether such
uneven distribution of closeness among MN pairs exists in
WLAN traces. We define encounters between MNs as the
time periods they associate with the same AP in the WLAN
trace. The likelihood or duration of encounters between two
MNs captures the friendship between them. This ”friendship”
in WLAN trace may or may not reflect social friendship,
which is impossible to validate from anonymized traces.
We propose to identify friendship between MN pairs based
on three different dimensions: Encounter duration, encounter
count, and encounter AP count, with the following definitions:



Fig. 1. CCDF of friendship index based on time

• Friendship based on encounter time: We define
friendship index based on duration of encounter as
Frdt(A, B) = Et(A,B)/OT (A), which is the ratio of
sum of encounter durations between node A and B,
Et(A, B), to total online time of node A, OT (A). This
is an index for how good a friend node B is to node
A based on duration of encounters. Note that in general
Frdt(A, B) 6= Frdt(B,A) and 0.0 ≤ Frdt(A,B) ≤
1.0 for any node pair A and B.

• Friendship based on encounter count: The friend-
ship index based on encounter count is defined as
Frdc(A,B) = Ec(A,B)/S(A), which is the ratio
between association sessions of node A that contains
encounter events with node B, Ec(A,B), to total asso-
ciation session count of node A, S(A).

• Friendship based on encounter AP count: The friend-
ship index based on encounter AP count is defined as
FrdAP (A,B) = EAP (A,B)/AP (A), which is the ratio
between number of APs at which node A has encounters
with B, EAP (A,B), to total APs node A visits, AP (A).

We first observe how friendship indexes distribute among all
node pairs in the traces. As shown in Fig. 1, the CCDF curves
of friendship indexes based on encounter time follow expo-
nential distributions for all campuses. We use Kolmogorov-
Smirnov test [7] to examine the quality of fit. The resulting
D-statistics for all traces are between 0.0356 and 0.0052,
which indicates we have a reasonably good fit between the
exponential distribution curves and the empirical distribution
curves. Please see [6] for more detailed results.

Exponential distribution of friendship index is an indication
that majority of nodes do not have tight relationship with
one another. In all the traces, only less than 5% of ordered
node pairs (A, B) have friendship index Frdt(A,B) larger
than 0.01. This reveals the fact that for node pairs that do
encounter with each other, most of them do not show tight
relationship. Among all node pairs with non-zero friendship
index, only 4.47% of them has friendship index larger than 0.7,
and another 11.85% of them with friendship index between
0.4 to 0.7. Friendship indexes based on encounter frequency
or encounter AP count also show similar exponential distribu-
tions.

We next look into the issue of whether friendship index
for an ordered node pair Frdt(A,B) and its reversed tuple
Frdt(B,A) are symmetric. We calculated the correlation
coefficients for all the traces for three definitions of friendship
indexes. The resulting correlation coefficients between ordered
node pair (A,B) and (B,A) are low in most cases (ranging
from 0.415 to −0.024, the only exception being 0.629 for
friendship index based on encounter time for Dartmouth 2004
trace), implying high asymmetry in friendship indexes.

IV. ENCOUNTER-RELATIONSHIP GRAPH WITH FRIENDS

Encounters between nodes can be viewed as opportunities
for them to exchange messages. Based on this assumption,
we raise a question regarding the possibility of establishing
campus-wide relationships among majority of MNs via en-
counters alone. That is, do encounters link MNs on campus
into one single community, or just small pieces of cliques?
Furthermore, how does friendship influence the encounter
patterns of nodes?

To investigate this question, we define a static encounter-
relationship graph (ER graph) as follows: Each MN is repre-
sented by a node in the ER graph, and an edge is added be-
tween two nodes if the two corresponding MNs have encoun-
tered at least once during the studied trace period. The concept
of ER graph is introduced to capture potential for establishing
relationships based on direct encounters. Typically, a MN may
maintain relationship selectively only with those MNs that are
considered ”trust-worthy”. For example, a MN may choose to
trust those MNs with which it has high friendship indexes.
The criteria of choosing the nodes to keep a relationship may
influence the structure of ER graphs. This issue is the main
focus of investigation in this section. Specifically, we try to
include friends with various degree of closeness in the ER
graph, and see how it influences the structure of the graph.
We use friendship index based on time as an example to show
how different friendship levels of included links can change
the structure of ER graph significantly.

We sort the list of nodes that a node A has encountered ac-
cording to friendship index, Frdt(A, B), ∀B 3 Frdt(A,B) 6=
0. After sorting, each node picks a certain percentage of nodes
from the list with which to establish a link on ER graph. We
choose nodes from top, middle, or bottom of the list and with
various percentages, and obtain the corresponding metrics for
the new ER graphs that include only the links to the chosen
nodes. Note that the links in ER graphs are directed links when
we consider friendship, as friendship is asymmetric between
a given node pair. We observe the following metrics from the
ER graphs formed with selected links based on the friendship
indexes:

• Clustering coefficient (CC) is used to describe the
tendency of nodes to from cliques in the graph. It is
formally defined as:
CC =

PM
nodei=1 CC(i)

M

where CC(i) =
P

A∈F (i)
P

B∈F (i) I(A∈F (B))

Frd(i)·(Frd(i)−1)
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Fig. 2. Metrics of encounter-relationship graph by taking various percentage of friends

I(·) is the indicator function, Frd(i) is the number of
friends node i chooses to include in the graph, F (i)
is the set of chosen friends of node i, and M is the
total number of nodes in the graph. Note that friendship
is a asymmetric relationship, so B ∈ F (A) does not
imply A ∈ F (B), and vice versa. Intuitively, clustering
coefficient is the average ratio of neighbors of a node that
are also neighbors of one another.

• Disconnected ratio (DR) is used to describe the connec-
tivity of ER graph. It is defined as the average percentage
of nodes that are within the same connected sub-graph of
a given node.

• Average path length (PL) is used to describe the degree
of separation of nodes in the ER graph. It is defined as
the average of path lengths (in unit of hops) for all node
pairs on the ER graph. If a node pair is disconnected, a
higher penalty (the average path length of regular graphs
with the same node number and average node degree) is
accounted as the path length for that pair of nodes.
When calculating average path length and disconnection
ratio, the paths must follow the direction of edges on the
ER graph.

Following the above definitions, we obtain the metrics when
including given percentages of all encountered nodes from
the top, middle, or bottom of the sorted encounter node list
according to friendship index based on time. The figures are
shown in Fig. 2. We use USC trace as an example, and similar
results are also observed in other traces.

The figures show a clear trend that if neighbors ranked high
in friendship index are included, the resultant ER graph shows
stronger clustering, and the average path length is much higher.
The result stems from the fact that top friends of a given
node are also likely to be top friend between one another,
forming small cliques in the graph. Clustering coefficient
remains high due to these cliques. Disconnection ratio and
average path lengths are high due to the lack of links between
different cliques. On the other hand, when low-ranked friends
are included in the graph, the links included are distributed
in a more random fashion, reflected by the low clustering
coefficient and low average path length. Similar results are also
observed in social science study of friendship between pupils
[5]. As larger portion of friends are included in the graph, all

three metrics converge to the values when all encounters are
included.

V. DISCUSSIONS AND CONCLUSION

In this paper we proposed friendship indexes to capture
closeness between MNs from the WLAN traces. We find
that friendship indexes are asymmetrically distributed among
all MNs. Although it is not possible to establish the exact
reason behind the closeness of MN pairs, this information may
be utilized in several applications, such as better algorithms
for cluster-forming in ad hoc networks, or finding a node to
temporarily store a packet with higher probability to deliver it
later to the final recipient. Protocols that are aware of social
relationship among MNs may be an interesting direction in
the future.

Using the concept of encounter-relationship graph (ER
graph), we establish that it is possible to create a campus-
wide community based solely on nodal encounters. Generally,
in social-relationship aware mechanisms, one tends to trust
top-ranked friends more than the others. However, as we see
in section IV, using top-ranked friends only results in an
ER graph with high clustering coefficient and average path
length, and may lead to a disconnected network. In order to
remain connected to a larger community, one should also use
some randomly-chosen users (or middle friends) to reduce the
degree of separation in underlying ER graph.
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